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With the aid of the Navier-Stokes equations. the viscous flow from plane 
and spherical sources is studied under the assumption that the coeffi- 
cient of viscosity depends on the temperature according to a power law, 
the Prandtl number being constant. The asymptotic solution is sought cor- 
responding to efflux of gas into a vacuum when the pressure at infinity 
tends to zero. 

In 111 were formulated conditions under which the viscosity and heat 
conduction had no effect on the asymptotic behaviour of the solution for 
a nanviscous supersonic source.. In the present paper the case is investf- 
gated when these conditions are not fulfilled, which is generally true 

in practice. 

It is shown that for a plane source the velocity at infinity tends to 
a vltlue somewhat less than the corresponding msximum velocity far a non- 
viscous stream. For a spherical source an unexDected result is obtained: 
the velocity of the gas at infinity tends to zero. 

Estimates derived in the paper show that in the region where the 
forces of viscosity in the momentum equations are comparable with the 
forces of inertia, the Navier-Stokes equations, generally speaking. lose 
their validity (just as in consideration of the struoture of a shock 
wave). Nevertheless it can be expected that these equations. as fn the 
case of a shock wave, give in a certain sense a correct qualitattve de- 
scription of the behavior of the flow. 

1. Let us consider hypersonic flow of an ideal gas in a nozzle, the 
initial portion of which deterlllines the flow in a certain region D ex- 
tending to infinity 11,21. Suppose that imediately behind the initial 
portion there is a sudden expansion of the stream, so that there takes 

place a free efflux of the gas into a vacuum (in practice - into a region 
Nith a pressure much lower than the pressure at the end of the initial 
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portion of the nozzle). With such an efflux into a vacuum the influence 

of the dissipative processes, unaccompanied by losses of momentum and 

heat to the surroundings, becomes apparent, not as in a boundary layer, 

but rather as in the front of a shock wave 111. 

Let us assume a power law dependence of the coefficient of viscosity 

u on the temperature 7' (u = 7"'). On the assumption that in the region D 

there is flow out of a source (in the general case the intensity of the 

source varies as we pass from one streamline to another [1,2]), the 

viscosity and the heat conduction do not change the asymptotic behavior 

of the flow at infinity when n > no 111. 'lhe quantity no for plane and 

1+ I 2 (x---11 

r” from the centre of the source 

felt, and the asymptotic expansion 

axisyrnnetric flow is, respectively 

no= 1, no= 

where K is the adiabatic exponent. 

When n < no, at a certain distance 

viscosity begins to make its presence 

[l] found from Euler's equations becomes invalid. We shall find a solu- 

tion for plane and spherical sources when n < no in the region where the 

forces of viscosity are important. 

2. Viscous flow from a plane source has been considered earlier in 

[3,41. In [33 th e problem was solved under the assumption that the coeffi- 

cient of viscosity u and heat conduction k are constant, whilst the 

Prandtl number u has a certain fixed numerical value. In [4] the solution 

is constructed for two cases, when one of the coefficients, u or k, is 

equal to zero. 'lhe results of [3,4] (when k = 0) are very close. The prob- 

lem reduces to the study of an ordinary differential equation of the 

first order with the coefficient of the derivative equal to l/R, where R 

is the kynolds number determined by the mass discharge Q of the source 

(R - Q//II). For a sufficiently large value of R the solution corresponds 

to the supersonic branch of nonviscous source flow. At a certain distance 

r from the center of the source a transition is possible in a narrow 

region of thickness R-' to the subsonic branch, generally speaking, of 

another nonviscous source flow. Here the pressure tends at infinity to a 

certain constant value pm, different from zero. 'Ihe position of this 

transition region, which is an ordinary shock wave formed by the influ- 

ence of viscosity, is determined by the value of pm, just as the position 

of the density jump in a supersonic nozzle is determined by the given 

pressure at the outlet. 

Moreover, there exists an integral curve, corresponding to the efflux 

of gas into a vacuum, the pressure along which tends to zero. In the 

particular case v = const, k = 0 this solution is indicated in [41. This 
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solution will be worked out 

according to a power law (n 
number u is constant. 

below for the case where ~1 and k depend on T 

is the exponent), and the value of Prandtl’s 
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The equations of plane viscous radial flow, after eliminating the 
pressure and density by means of the equations of continuity and state, 
can be reduced to the following dimensionless form, as shown in [31 

(XW2 - e) w’ + we’ + we = - %e$ (W” - w) - xnw;y (wt + ;) (2.1) 

fL=;, * T, = %&To, w=-;, * v,=pGm, 

t=lnI;f-, R’=$$ 
(2.3) 

Here (2.1) is the equation of momentum, (2.2) is the energy integral, 
which exists in the case of radial flow. We have introduced the follow- 
ing notation: V is the gas velocity; 1~ and 0 are the dimensionless velo- 
city and temperature, respectively; 7’s is the stagnation temperature de- 
termined at the point where the velocity and also the gradients of velo- 
city and temperature are zero. T, 
and velocity, respectively, 

and V* are the critical temperature 
expressed in terms of To by the formulas for 

the nonviscous flow; C is the gas constant; the coefficient of viscosity 
is given in the form n = n, (T/T*)“; r is the distance from the center 
of the source; r is a characteristic length, which in what follows can 
be taken as the radius of the equivalent nonviscous source with the same 
value of heat content; R+ is the Reynolds number corresponding to the 
critical temperature; a dash denotes differentiation with respect to the 
independent variable c; the remaining notation has been introduced above. 

Suppose that UJ and 0 tend at infinity (g - - m) to certain limiting 
values w, and 0,, respectively. From the requirement that the quantities 
w, and 0, be not infinite, we have 

lim w’ = 0, iim 8’ = 0 when 54-m (2.41 

We can show that when n ( no the quantity 0, is not equal to zero. 
Assuming for the sake of argument that 8, = 0 and setting w = w,,,(l + A), 
where /A\ << 1, we find from Equation (2.21, taking into account (2.4), 
that the velocity at infinity tends to the maximum velocity Vm for the 
inviscid flow, i.e. wao2 = (K + I)/(K - 1). From Equation (2.3) we have, 
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moreover, 1 AI * 8” when II. < no = 1 and 181 * 8 when n 2 1. Making use of 
the expression for A and ignoring small quantities we reduce Equation 
(2.1) to a differential equation of the first order. It turns out that 
when n < 1 a solution for which 8 tends to zero at infinity does not 
exist. When n > 1 the solution obtained for inviscid flow is valid. 

We are left to conclude that 3, # 0 when n < no. 

To determine the quantities ‘Do and 0,,,, taking account of (2.4), we 

have from Equations (2.1) and (2.2) 

In obtaining the first Equation (2.5) we have made use of the condi- 

tion w”+ 0 when c - - 0~) following from the fact that w’ tends to zero 
(2.4). From Equations (2.5) we can obtain a transcendental algebraic 
equation for determining 0,, having solved which, we can find wco as well: 

Let us assume that the Reynolds number R+ is sufficiently large. Then, 
solving the first Equation (2.6) by the method of successive approxima- 
tions and limiting ourselves to two approximations, we have 

For the limiting Mach number M, we obtain, accepting 
mation 

P= 
3x-i 

x(x+i) 

(2.7) 

the first approxi- 

(2.8) 

Accordingly, the Mach number in plane flow efflux into a vacuum tends 
to a finite limit as a result of the influence of the dissipative pro- 
cesses, whilst the velocity of the gas tends to a value somewhat less 
than V.. 

As has already been remarked, the Expressions (2.7) can be used when 
n < 1. When n ‘B 1 we have, according to [l] ‘, woo2 = (K + l)/(~ - 1)) 

0, = 0. 

To determine the asymptotic character of the behavior of the solution, 
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let us write the required functions in the form v = w,(l + A), 

8 = e,U + $, where A and q are small quantities, in Equations (2.1) 
and (2.2). Let us find the solution in stages, first of all to an accu- 

racy of the first order in A and q, then to an accuracy of the second 

order, and so on. As a result we obtain 

w=w,(l +a,ekE+a2e2kE+.. .) = w,[l + al (I;?)‘+ a2 (:)lk+ . . .] 

8 = 0,(1 + b,ekE+ b2eyE + . . .) = e,[1 + br (?)I + bz (I;rjea+. . .] (2.9) 

l’he coefficients of these series depend on ye parameter, which we 
can take to be, for example, the quantity blr . It is convenient, how- 
ever, to choose r equal to the critical radiis of the inviscid source, 
flow from which aiproximates to the flow from the viscous source under 
consideration in the region where the viscous terms are small in com- 
parison with the convective terms. Then for the arbitrary parameter we 
take the quantity b,. We have the following equations: 

an = Al% (k, g,, woo), b, = brn(pn 6, 003, w,) 

where f, and 0, are known functions. For example, fl is expressed by 

fl = %o n (1 - 0.5k) - k - 1 
xkw,a + 0, (ka - k - 2) 

(2.10) 

The parameter k in (2.9) and (2.10) is determined from the equation 

~k~$h[~f&(l -~)]k2+[1+($-3)1-_]k+ 

+[(-3+ +)n+(X-I)(?+I)]=0 (h = 3) (2.11) 

It is necessary to choose the root of this equation which remains 
finite as R+ tends to infinity, i.e. as A - 0. For this root we obtain 
an approximate expression from (2.11): 

k=ko+h 3-----~k,-$.]+O(h2), 
L X k,=(x--1)(1-n) (2.12) 

Using the equations of continuity and state, it is easy to perceive 
that for the solution under consideration the pressure tends to zero. 

3. Let us consider viscous flow from a spherical source. In [SJ this 
investigation was carried out under the assumption that r does not 
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exceed a certain fixed value rl, and for constant values of the coeffi- 
cients of viscosity and heat conduction. Under these conditions results 
were obtained similar to the case of a plane source. The flow up to a 
certain value r = r0 corresponds to the supersonic branch of an inviscid 
source flow, and then passes through a shock wave to the subsonic branch 
of, general1 y speaking, another source flow. ‘Ihe pressure at infinity 
for the subsonic source, when not equal to zero, determines the position 
of the shock wave. 

Let us study the asymptotic behavior of the solution for which the 

pressure at infinity tends to zero. As in the first section, we shall 
assume a power law for the nature of the dependence of the coefficients 
of viscosity and heat conduction upon temperature. The equations of 
motion can be reduced, after eliminating pressure and density, to the 

form 

(Y = r* I r, R, = 3Q I Gr,) 

Here the rest of the notation is the same as in Section 1. 

It turns out that, in contrast to the case of the plane source with 
n < no = 1 t 0.5(K - I)-‘, the velocity w obtained from the solution of 

Equations (3.1) and (3.2) tends to zero at infinity. We shall present a 
proof for n = 0. Let us suppose on the contrary, that w tends to w,,, > 0 
at infinity. Let us integrate Equation (3.2) with respect to y, denoting 
by the index 1 the values of quantities when y = yl. As a result we ob- 

tain 

u 

s edy+ e[ w2$+ 3(0 -01) = 

* 
4aR 

* 
t/l 111 

u 
x-l * =-- 

2 s 
w2dy -- x ; * (w” - WI*) -+ q (y - y1) 

t/r 
(3.3) 

The right-hand side of Equation (3.3) remains finite as y tends to 
zero (which corresponds to r - a). Hence it follows that the left-hand 

side of the equation must also remain finite, i.e. 0 must satisfy the 
asymptotic expression 

tl ~ _ 43 (K - 1) ---woo21ny when y-+0 
3 P/4) 
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Equation (3.4) contradicts the physical sense of the problem, since 
it follows thence that the temperature of the gas increases without limit 
at infinity. We shall show that the assumption w, > 0 contradicts also 
the first Equation (3.1). Let us rewrite this equation with n = 0 in the 
form 

(3.5) 

Let us integrate Equation (3.5) twice in the interval from a certain 
fixed value y = y1 up to y. Eventually we obtain 

Now let y tend to zero. Taking account of (3.4) and assuming that 20 

is finite, we find that all the terms on the right-hand side of (3.6) 
remain finite except the last, which is expressed asymptotically in the 
form (Zw~~*) In (l/y). At the same time the left-hand side of the equa- 
tion remains finite. !tr, have therefore arrived at a contradiction of 
our initial assumption, according to which fuaD > 0. We are left to con- 
clude that the velocity of the gas at infinity tends to zero. 

A similar but more complicated proof can be presented also for 
0 < n< no. Let us trace the course of the proof. Assuming that a solu- 
tion of the formulated problem exists, i.e. the quantities w and 8 do not 
tend anywhere to infinity, let us integrate Equation (3.2) with respect 
to y when n f 0. As a result we find that the integral 

must converge with y tending to zero. Hence it follows that either the 
temperature or the velocity for the spherical source must vanish at in- 
finity, When n > 12’ the temperature tends to zero, whilst the velocity 

tends to the maxims velocity f1I for the nonviscous source V,. When 
n < no the temperature 8, is different from zero, whilst the velocity 

% = 0. Assuming the opposite, that w = w,(l + A), where /A[ << 1 and 
We # 0, let us substitute the expression for w in Equations (3.1) and 
(3.2). Investigating the system so obtained, we are forced to accept the 
truth of the stated theorem. 
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‘lhe solution in the neighborhood of a point at infinity, for which the 
pressure tends to zero, has the following form when n < no: 

10 = l/y (a, + a,y + a$/* + . . .), e = bo + b,y + b& + . . . (3.8) 

lhe coefficients of these series depend on a parameter, which we can 
take to be, for example, the quantity b, 

2R 
%a =3x 0 

*b 1-n 
r 

b =~@+W, 
1 

%ln 

1 2(2x-_) b 
-x(x+1) 0 I 

(3.9) 

Ihe quantity r +, just as in Section 1, is chosen equal to the critical 
radius of the nonviscous source, flow from which approximates to the 
flow from the viscous source under consideration in the region where the 
forces of viscosity are unimportant. 

4. l’he results obtained indicate the fact that the dissipative pro- 
cesses for plane and spherical sources when n < no (and consequently, 
also for the plane end axisynraetric cases of efflux into a vacuum) grove 
to be essentially different. In the first case the velocity at infinity 
differs only slightly from the maximum velocity Va for a nonviscous flow, 
whereas in the second case the velocity of the gas tends to zero. l’bese 
results are obtained under the assumption that the Navier-Stokes equa- 
tions are valid. However, starting at a certain distance, these equations 
lose their validity. In order to determine the boundary of the applica- 
bility of the Navier-Stokes equations, let us find that region in which 
the ratio of the supplementary terms in Burnett’s equations to the terms 
in the Navier-Stokes equations representing the effect of viscosity, be- 
comes a quantity of order unity. ‘Ibis is in fact the criterion that the 
Navier-Stokes equations lose their validity. The indicated ratio y is 

(see, for example, [61) 

(4.1) 

where p is the pressure, and the rest of the notation is the ssme es in 
Section 1. Making use of the asymptotic representation of the solution 
for a nonviscous source Cl], we find from Equation (4.1) that 

s = (x - 1) (1 -t v) (1 - n) + v (4.2) 

where v = 0 and 1, respectively, for plane and spherical sources. Let us 
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now write down, however, the ratio Q of the viscous terms in the Navier- 
Stokes equations to the convective terms. ‘Ihis ratio, according to [ll, 
is 

q= 4(v+1)R* x+1 
3 (")"($', q=(X-uy (x3-i) (4.3) 

where s has the same value as in Equation (4.2). Comparing (4.2) and 
(4.3), we find that 

d, -c 
x(x--i) (1 +w 

Q X+1 (4.4) 

From (4.4) it follows that in a region where the viscous terms of the 
Navier-Stokes equations are comparable in order of magnitude with the 
nonviscous terms (Q Q l), the Burnett terms are of the same order as the 
viscous terms, since y * Q. In other words, in a region where dissipation 
is important, the Navier-Stokes equations are, generally speaking, in- 
applicable. ‘Ihe question arises as to how much the results obtained in 
Sections 2 and 3 of this paper on the basis of an analysis of the Navier- 
Stokes equations, agree with the truth. ‘Ihis question remains as yet un- 
answered. We can, however, think that, as in the study of the structure 
of a shock wave, the Navier-Stokes equations give a correct qualitative 
description of the flow pattern up to such times as the flow begins to 
approximate to free molecule flow. 

l’he results obtained can be considered as an indication of the 
circumstance that the velocity of free-molecular flow for plane efflux 
is close to Vm, whereas for three-dimensional flow this velocity can be 
significantly less than V m’ 

On the other hand, it follows from the law of conservation of energy 
that the flow of total energy from the source in unit time, equal to 
QVm2/2, must be equal to the flow of energy of free-molecular flow, 
which consists of the energy of its orderly radial motion and the energy 
of the random motion, corresponding to the external (progressive motion) 
and the internal (rotational, vibrational motion and so on) degrees of 
freedom. Since the mass discharge for free-molecular flow through a 
closed surface enclosing the source is equal to the intensity of the 
source Q, then we can write down the equation 

v,a = v,a + ca (4.5) 

where V, is the radial velocity of the macroscopic motion, whilst c is a 
quantity with the dimensions of velocity, the square of which is equal 
to twice the energy of the averaged random motion of the molecules in 
unit mass. The quantity c evidently characterizes the “thermal 
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scattering” of free-molecular motion. 

From (4.5) and the foregoing considerations it follows that in plane 
flow the thermal scattering is not large, i.e. nearly all the energy of 
the source passes into energy of orderly motion. A different pattern 
emerges in three-dimensional flow: as a result of the strong influence 
of the dissipative processes a significant part of the energy of the 
stream can be transformed into energy of random thermal motion of the 
molecules. 

We note that a similar phenomenon can occur in problems of unsteady 
motion of a gas dispersing into a vacuum. Here also, it appears, a very 
important part is played by the dissipative processes. 

In conclusion, the author expresses his gratitude to V.S. Galkin and 
M.N. Kogan for their interest in this paper and their helpful comments. 
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